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In part I [6] of this work the application of Modal Coupling Control (MCC) to vibration
control of oscillatory systems from a theoretical and computer simulation perspective was
studied. A second order auxiliary system as the controller which was coupled to the plant
through non-linear terms was developed. The general form of the coupling terms was
derived, which showed that when the system is in resonance, a strong energy link between
the plant and controller is established. A phenomenon called the neck resulting from the
proposed method was also introduced.

In this part the neck phenomenon is studied in detail and shows that by using the
proposed MCC, the neck exists for any non-linear second order system with oscillatory
linear part. The stability of the closed loop system is also addressed and a relation for the
selection of the controller gains for having a stable system is derived. Upon calculating the
neck time analytically, an algorithm for control implementation is elaborated. Finally, the
proposed controller is applied to an experimental cantilever flexible beam with
piezo-ceramic actuators. The results show that the proposed controller is more effective
than the conventional velocity feedback control specially when the control effort is
unidirectional. This is particularly important for actuators which are not able to provide
a bi-directional force such as cable-driven and shape memory alloy actuators.
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1. INTRODUCTION

In this section the results obtained in reference [1] are reviewed. The authors then prove
that there exists a neck in any non-linear second order system with oscillatory linear part.
A relation that gives the time at which the neck occurs is derived. This relation enables
one to apply the new controller strategy to a wide class of linear and non-linear systems.

In reference [1] a general second order differential equation was considered as the plant,

ẋp =Apxp +Fp (xp )+Up , (1)

where xp =(xp1, xp2)T is the span of the state variables, and

Ap =0 0
−w2

p

1
−2zpwp1, (2a)
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Fp (xp )=0f1(xp )
f2(xp )1, Up =00

up1. (2b)

The non-linear terms f1(xp ), f2(xp ) are continuous and differentiable and one assumes
f1(0)= f2(0)=0 and Df1(0)=Df2(0)=0 to ensure that the origin is a fixed point. The
plant input is Up which is defined later.

Since the essence of the modal coupling controller is a strong interaction between two
systems, another second order oscillatory system was defined as the controller:

ẋc =Acxc +Uc , (3)

where xc =(xc1, xc2)T and

Ac =0 0
−w2

c

1
−2zcwc1, Uc =00

uc1. (4a, b)

The above two systems (1) and (3) are coupled through the input terms Up and Uc .
Assuming Up and Uc are second order in xp and xc , one showed in reference [1] that the
equations are strongly coupled when wc =wp /(2z1− z2

c ) and up (x) and uc (x) are chosen
to be

up (xc )= p1x2
c1 + p2xc1xc2 + p3x2

c2, (5a)

uc (xp , xc )= q1xp1xc1 + q2xp1xc2 + q3xp2xc1 + q4xp2xc2, (5b)

where p1, . . . , p3 and q1, . . . , q4 are constant.
Defining a normal form transformation

xp = yp + h2(yc ), xc = yc , (6a, b)

where h2(yc ) is

h2(yc )=0d1y2
c1 + d2yc1yc2 + d3y2

c2

d'1y2
c1 + d'2yc1yc2 + d'3y2

c21, (7)

with coefficients given in reference [1], the equations (1) and (3) are transferred to

ẏp =Apyp +Fp (yp )+O(3), ẏc =Acyc +Uc (y)+O(3) (8a, b)

with initial conditions

xp (0)= yp (0)+ h2(yc (0)), xc (0)= yc (0). (9a, b)

Ignoring higher order terms, O(3), in equation (8a), the plant response in normal form
space is zero if yp (0)=0. Therefore, knowing the plant initial conditions in xp (0), the
authors suggested the initial conditions of the controller yc (0) be chosen so that yp (0)=0
or

xp (0)= h2(yc (0)), xc (0)= yc (0). (10a, b)

Using the feedback inputs (5) to couple two systems and choosing the controller initial
conditions from equation (10), a strong energy link is established and the oscillatory energy
is exchanged from the plant (1) to the controller (3) so that at a certain point the plant
energy becomes minimum. This minimum point of the plant energy was called the neck
and the time required to reach the neck neck time.
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As an example, consider the following oscillatory system with non-linear damping
and restoring force (note that in this example ẋp1 = xp2, ẋc1 = xc2, f1(xp )=0 and
f2(xp )=−Cẋ3

p1 −Kx3
p1:

ẍp1 +2wpzpẋp1 +w2
pxp1 +Cẋ3

p1 +Kx3
p1 = up . (11)

The plant input up is now used to couple equation (11) with another oscillatory system (the
controller)

ẍc1 +2wczcẋc1 +w2
c x2

c1 = uc , (12)

where wc =wp /2z1− z2
c and uc is the controller input. Using equation (5) and assuming

p1 =0, p2 =8, p3 =−3 and q1 = q2 =0, q3 =−1, q4 =0·4, the plant and the controller
inputs become (the stability of the closed loop system is investigated in section 4)

up =8xc1ẋc1 −3ẋ2
c1, uc =−ẋp1xc1 +0·4ẋp1ẋc1. (13a, b)

To show the neck in the plant response, the system is simulated for the four cases shown
in Table 1. For simplicity the initial conditions of the plant (11) are assumed to be
xp =(0·1, 0·2)T for all cases.

Using equation (10) there are two solutions for yc (0) in each case study of Table 1.
However, the solutions are only different in sign and therefore the controller response,
xc1(t) and xc2(t), using either solution is the same except for a 180° phase difference. Since
the plant input is second order in xc1 and xc2, the plant response is not affected by the choice
of either solutions.

Figure 1(a) is the plant response xp1(t) for case 1 that is a simple undamped linear
oscillatory. As seen in the figure, the plant response decays to zero (the neck) and then
rises to constant amplitude oscillations. The response of the system after changing the
controller and plant damping and also adding non-linear terms to the system (case 2) is
illustrated in Figure 1(b). As shown in the figure the occurrence of the neck is not affected
by adding the non-linearities or by changing the damping ratios. The vertical lines in the
figures show the approximated neck time which will be derived in the next section.

Finally, the plant natural frequency (wp ) is changed and the response of the system for
a linear and non-linear case examined. Figures 2(a) and 2(b) demonstrate the response of
the system for cases 3 and 4, respectively. In these cases the same behavior emerges in the
plant response and the progression of the neck for a general non-linear system using the
proposed method is evident.

In this paper, in order to take advantage of this phenomenon, the existence of the neck
is first shown, in a class of non-linear systems defined by equations (1) and (3) and then
a relation for the neck time in terms of the system parameter is dervied. The stability of
the closed loop system is also proven and an algorithm for control implementation
introduced. The method is then applied to an experimental piezo-actuated flexible beam.
Previous research and literature relevant to this topic (references [2–11]) has been

T 1

Parameters of equations (11) and (12)

Case wp zp zc C K xc1(0) ẋc1(0) wc =wp /z1− z2
c

1 20 0 0·15 0 0 0·145 2·699 10·11
2 20 0·01 0·1 0·03 200 0·113 1·955 10·05
3 10 0 0·15 0 0 0·098 1·383 5·06
4 10 0·01 0·1 0·02 40 0·077 1·012 5·03
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Figure 1. Plant response for (a) case 1 and (b) case 2 of Table 1.

summarized in part I. Other aspects of non-linear analysis and control are provided in
references [13, 14].

2. ANALYSIS OF THE NECK

In order to use the neck as a mechanism to remove the oscillatory energy from the plant
to the controller one should be able to address: (1) In what kind of systems does the neck
exist? (2) How is the neck time related to the system parameters and the initial conditions?

The authors’ tool in addressing the above questions and capturing the neck in the plant
response is transformation (6) and the system normal form equation (8). Equation (8) is
a non-linear system of differential equations and does not have a closed form solution.
Also, assuming yp (0)=0, the solution of the truncated normal form (ignorning O(3) from
equations (8)) is yp (t)=0 and yc (t)= eActyc (0). Therefore, the plant response using
xp = yp + h2(yc ) is a damped oscillatory response and does not predict a neck. The only
way to capture the neck is to consider equation (8) with higher order terms. In the next

Figure 2. Plant response for (a) case 3 and (b) case 4 of Table 1.



 ,   675

section the higher order terms of equation (8) are derived and a perturbation method used
to approximate the solution.

2.1.      

The non-linearity of the plant Fp (xp ) is first expanded in a Taylor series

Fp (xp )=F 2
p (xp )+F 3

p (xp )+· · ·, (14)

where Fi
p (xp ) is the ith order in the expansion. The quadratic term of Fp (xp ) is written as

F 2
p (xp )=0xT

p R1xp

xT
p R2xp1, (15)

where R1 and R2 are symmetric constant matrices

R1 =0 r1
1
2r2

1
2r2

r31, R2 =0 r'1
1
2r'2

1
2r'2
r'3 1. (16)

Now the equations of the plant (1) and the controller (3) with inputs (5a) and (5b) and
non-linear terms (14) are

ẋp =Apxp +Up (xc )+F 2
p (xp )+F 3

p (xp )+O(4), (17a)

ẋc =Acxc +Uc (xc , xp ). (17b)

Applying transformation (6) to equation (17) and observing that equation (6) eliminates
Up (xc ), equation (17) is transformed into

ẏp =Apyp +F 2
p (yp )+G3(yp , yc )+c4(yc )+G4(yp , yc )+O(5), (18a)

ẏc =Acyc +Uc (yp + h2(yc ), yc ), (18b)

where c4(yc ) contains all fourth order terms of only yc and Gi (yp , yc ) contains all other
terms of order i. In the following analysis one only needs c4(yc ), that is

c4(yc )=0h2(yc )TR1

h2(yc )TR21h2(yc )−201
2d2
1
2d'2

d3

d'31ych2(yc )TQyc . (19)

Equation (18) is non-linear and more complicated than equation (17). However, in
the proposed control scheme the initial conditions of the plant in equation (18a) are zero.
This assists one to find an approximate solution for equation (18) using a perturbation
method.

One first scales equation (18) and transformation (6). Considering e as a positive but
small parameter, equation (18) becomes

ẏp =Apyp + e(F 2
p (yp )+G3(yp , yc )+c4(yc )+G4( yp , yc )+O(5)), (20a)

ẏc =Acyc + eUc (yp + h2(yc ), yc ), (20b)
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and equation (6) is written

xp = yp + eh2(yc ). (21)

Using the fact that the solution of equation (20) is analytic with respect to parameter e

(see e.g., Nayfeh and Mook [14]), yp and yc can be written as a power series expansion
in e:

yp = y(0)
p (t)+ ey(1)

p (t)+ · · ·+ eny(n)
p (t)+ · · ·, (22a)

yc = y(0)
c (t)+ ey(1)

c (t)+ · · ·+ eny(n)
c (t)+ · · ·. (22b)

The coefficients of the powers of the parameter e are functions of the independent variable
t. The functions y(n)

p (t) and y(n)
c (t) are found by substituting equation (22) into equation (20)

and equating the coefficients of like powers of e. This leads to an infinite set of linear
inhomogeneous differential equations that may be solved recursively.

Substituting equation (22) into equation (20) and collecting terms of the same power
of e, one obtains

e0:

ẏ(0)
p =Apy(0)

p , ẏ(0)
c =Acy(0)

c . (23a, b)

e1:

ẏ(1)
p =Apy(1)

p +F 2
p (y(0)

p )+G3(y(0)
p , y(0)

c )+c4(y(0)
c )+G4(y(0)

p , y(0)
c )+O(5), (24a)

ẏ(1)
c =Acy(1)

c +Uc (y(0)
p + h2(y(0)

c ), y(0)
c ). (24b)

Using the solutions of equations (23) and (24) in equation (21) one obtains

xp = y(0)
p + ey(1)

p +· · ·+ eh2(y(0)
c + ey(1)

c +· · ·)= y(0)
p + e(y(1)

p + h2(y(0)
c ))+ · · ·. (25)

Since in the proposed control scheme yc (0) has been chosen so that yp (0)=0, the initial
conditions of equation (20) under the substitution (22) translate into the following initial
conditions on the coefficients y(n)

p (t) and y(n)
c (t):

y(n)
p (0)=0, ne 0; y(n)

c (0)=6yc (0),
0,

n=0
ne 1

. (26a, b)

The solution of equation (23) with associated initial conditions from equation (26) is

y(0)
p (t)0 0, y(0)

c (t)= eActyc (0). (27a, b)

One substitutes equation (27) into equation (24) to obtain a non-homogeneous differential
equation for y(1)

p . Ignoring O(5) and noticing that y(0)
p (t)0 0, one obtains

ẏ(1)
p =Apy(1)

p +c4(y(0)
c (t)), y(1)

p (0)=0. (28)

The solution of linear non-homogeneous equation (28) with zero initial condition is

y(1)
p (t)=g

t

0

eAp(t− t)c4(y(0)
c ) dt. (29)

The plant response can now be approximated (setting e=1) by

xp = y(1)
p (t)+ h2(y(0)

c ). (30)
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Figure 3. (a) Approximate plant response: y(1)
p1 (–––), h21(y(0)

c ) (— - —). (b) Exact solution (——), approximate
solution (— - —).

The approximated plant response in equation (30) consists of two terms. The first term,
y(1)

p (t) in equation (29), evolves from zero to a periodic response with the plant natural
frequency wp . The second term h2(y(0)

c ) starts at the plant initial conditions (xp (0)= h2(0))
and decays to zero since h2(·) is a function of yc .

As an example, consider case 1 in Table 1. In Figure 3(a), the solid line shows y(1)
p1 (t),

while the dashed line shows h21(y(0)
c ) (note that h2(yc )= (h21(yc ), h22(yc ))T). Adding y(1)

p1 (t)
and h21(y(0)

c ) results in the approximated plant response xp1(t) which is shown in Figure 3(b)
with a dashed line. To compare the exact solution with the approximated solution, the
plant response is plotted in Figure 3(b) with a solid line. The differences between the
solutions are negligible and indicate the success of the analysis in explaining the neck
phenomenon.

As seen in Figure 3(a) the phase difference h21(y(0)
c ) and y(1)

p1 (t) is almost 180°. Therefore,
the addition of the responses of h21(y(0)

c ) and y(1)
p1 (t) causes a neck in the plant response.

Figure 4 shows the envelopes of h21(y(0)
c ) (curve 1) and y(1)

p1 (t) (curve 2) along with the plant
response (curve 3). It is clear from Figure 4 that the neck time is the time that the envelopes
of y(1)

p1 (t) and h21(y(0)
c ) intersect. This fact is used to derive the neck time in the next section.

Figure 4. (1) Envelope of h21(y(0)
c ), (2) envelope of y(1)

p1 (t), (3) plant response.
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3. CALCULATION OF THE NECK TIME

In this section the envelopes of y(1)
p1 (t) and h21(y(0)

c ) are approximated in order to find the
neck time. We write the solution of y(0)

c (t), equation (27b), as

y(0)
c (t)=Y0 e−zcwct0 sin (bcwct+fc )

wc (−zc sin (bcwct+fc )+ bc cos (bcwct+fc ))1, (31)

where (note that yc =(yc1, yc2)T and y(0)
c (0)= yc (0))

fc =tan−1(bcwcyc1(0)/[yc2(0)+ zcwcyc1(0)]), Y0 = =yc1(0)/sin (fc ) =. (32a, b)

Substitution of equation (31) into h21(·), equation (7), and simplification, result in a damped
oscillatory response for h21(y(0)

c ) with frequency 2bcwc =wp and damping factor e−2zcwct.
Noticing that wp 1 2wc and e−2zcwct 1 e−zcwpt, one can approximate h2(y(0)

c ) with a
one-degree-of-freedom system with frequency wp and damping ratio zc . Since
h2(y(0)

c (0))= xp (0) the envelope of h21(y(0)
c ), env(·), is approximated as

env (h21(y(0)
c ))=X0 e−zcwpt, (33)

where

fp =tan−1(bcwpxp1(0)/[xp2(0)+ zcwpxp1(0)]), X0 = =xp1(0)/sin (fp )=. (34a, b)

To find the envelope of y(1)
p (t) one solves equation (28). Substituting y(0)

c from equation
(31) into c4(yc ), equation (19), gives the forcing input of equation (28).

Since zp in general is very small and negligible compared to zc , equation (28) is solved
assuming zp =0. However, the effect of zp is incorporated in the envelope of equation (28)
later. Expansion of c4(y(0)

c ) shows that it is composed of sin (·) and cos (·) with frequencies
wp and 2wp and a constant term all of which are exponentially damped with factor e−4zcwct.

Equation (28) is solved for each individual term of c4(y(0)
c ) and the final solution is found

by superposition. Due to the volume of computation, a symbolic computation software,
Maple, was used to derive and simplify the results†. The solution of (28) has the form (note
that y(1)

p (t)= (y(1)
p1 , y(1)

p2 )T)

y(1)
p1 (t)= e−4zcwctY 4

0 (k1 cos (wpt+2fc )+ k2 sin (wpt+2fc )+ k3 cos (2wpt+4fc )

+ k4 sin (2wpt+4fc )+ k5)+ x, (35)

where
x=(Y 4

0 /d)(a cos (wpt)+ b sin (wpt)) (36)

and k1, . . . , k5 and a, b, d are constants. The steady state response of equation (35), x,
is periodic and undamped and its envelope is (Y 4

0 /d)za2 + b2. The other terms of equation
(35) decay to zero exponentially with damping factor e−4zcwct. Noticing that y(1)

p1 (0)=0, the
envelope of these terms is −(Y 4

0 /d)za2 + b2 e−4zcwct. Addition of this envelope to the
envelope of x results in the envelope of y(1)

p1 (t) that is

env (y(1)
p1 (t))= (Y 4

0 /d)za2 + b2(1−e−4zcwct). (37)

Equation (37) is the envelope of y(1)
p1 (t) when zp =0. However, by including the effect of

the plant damping, noticing that when zp W 1, x is written

x=(Y 4
0 /d)(a cos (wpt)+ b sin (wpt)) e−zpwpt, (38)

† All calculations in Maple are available upon request.
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its envelope becomes (Y0/d)za2 + b2 e−zpwpt. Therefore, the adjusted envelope of y(1)
p1 (t) for

zp $ 0 is

env (y(1)
p1 (t))= (Y 4

0 /d)za2 + b2(e−zpwpt −e−4zcwct). (39)

The expressions for a and b are complicated. However, a and b are polynomials of zc

and ignoring all terms but the linear terms, gives a very good approximation for the
envelope of y(1)

p1 (t). This approximated envelope takes the form

env (y(1)
p1 )= (Y 4

0 /d)z(a0 + a1zc )2 + (b0 + b1zc )2(e−zpwpt −e−4zcwct). (40)

Including the stability analysis results which are derived in the next section, a0, a1, b0, b1

and d are given in Appendix A. The expressions are specially simple when there are no
second order non-linearities (ri = r'i =0).

One can now use equations (33) and (40) to calculate the neck time. In Figure 4 one
showed that the neck occurs when the envelopes of h21(yc ) and yp1(t) intersect. Using
equations (33) and (40) to find the intersection of the envelopes of h21(y(0)

c ) and y(1)
p1 (t) yields

X0d/Y 4
0z(a0 + a1zc )2 + (b0 + b1zc )2 = e−wp(zp − zc)tN −e−wp(zc/bc)(2−bc)tN. (41)

The value of tN satisfying equation (41) is the neck time.
The case studies in Table 1 are now used to show the validity of the above analysis.

In cases 1 and 3 of Table 1, zp =0, and as seen in Figures 1(a) and 2(a) the plant responses
have permanent oscillations. The amplitude of this permanent oscillation is approximated
by equation (40) as t:a. Column 2 in Table 2 displays the exact amplitude of the
permanent oscillation while column 3 is the amplitude calculated using equation (40). The
error between the exact and the approximated amplitudes is small. The neck time in
column 4 of Table 2 is found using equation (41). The neck time is marked with a vertical
line in the simulation results shown in Figures 1 and 2. The closeness of the approximated
neck time to the exact time indicates the accuracy of the method.

So far, the existence of the neck in a class of non-linear systems defined in equations
(1) and (3) has been shown. A relation to obtain the neck time has also been derived. In
the subsequent section the stability of the closed loop system is studied and then the neck
time is used to introduce an algorithm to implement the controller.

4. STABILITY ANALYSIS

In any controller design one of the main issues to be addressed is stability. If zp and zc

are non-zero, Lyapunov’s first method applied to equations (1) and (3) reveals that the
origin of the closed loop system is stable. However, the controller scheme proposed in
section 3.1 is for systems with zp =0 or zp�0. Using Lyapunov’s second method we
analyze the stability of equations (1) and (3) at the origin when zp =0.

T 2

Neck time and permanent amplitude

Exact permanent Approximated permanent
Case amplitude amplitude using (40) Neck time

1 0·007 0·006 0·94
2 0 0 1·44
3 0·008 0·007 1·77
4 0 0 2·73
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The basic concept of Lyapunov’s direct method is to find a continuously differentiable
locally positive definite function V such that its derivative along the trajectories is locally
negative semi-definite. In such cases the equilibrium point is stable.

It should be noted that the Lyapunov’s second method provides only a sufficient
condition for stability and no definite conclusion can be drawn if the derivative of V fails
to be locally negative definite. Lyapunov’s second method is not constructive, and there
is no general rule to find a Lyapunov’s function for any non-linear system.

Due to these difficulties our study is limited to the case when the plant non-linearity is
of the form

Fp (xp )=0 −g1(xp )
−g2(xp1)− g3(xp )1, (42)

where DFp (0)=0 and, g1(xp ), g2(xp1) and g3(xp ) satisfy (1) g1, g2 and g3 are continuous,
(2) g1(0)= g2(0)= g3(0)=0, and (3) xp1g1(xp )q 0, xp1g2(xp1)q 0 and xp2g3(xp )q 0
whenever xp1 and xp2 are non-zero. This form of non-linearity includes non-linear springs
and non-linear viscous forces which are important in physical systems.

The closed loop equations (1) and (3) with non-linear terms (42) and inputs Up and Uc

given by equations (5a) and (5b) are now considered. One defines the Lyapunov’s function
candidate

V(x)= 1
2x

TLx+ a1 g
xp1

0

g2(j) dj, (43)

where L is diagonal:

L=Diag (a1w2
p a1 a2w2

c a2) (44)

and a1, a2 q 0. Conditions (1)–(3) ensure that V is a continuously differentiable positive
definite function, so that V is a suitable Lyapunov’s function candidate.

Calculating V� (x), one obtains

V� (x)=−a1w2
pxp1g1(xp )− a1xp2g3(xp )−2a2wczcx2

c2 − a1g1(xp )g2(xp1)

+ a1xp2Up + a2xc2Uc . (45)

The first four terms in equation (45) are negative. The last two terms are cubic in x and
therefore the origin is a saddle point. The only way to satisfy V� (x)E 0 is to set

a1xp2Up + a2xc2Uc =0. (46)

Substituting Up and Uc from equations (5a) and (5b) into equation (46) implies that

a1p1xp2x2
c1 + a2q1xp1xc1xc2 + a2q2xp1x2

c2

+ (a1p2 + a2q3)xp2xc1xc2 + (a1p3 + a2q4)xp2x2
c2 =0. (47)

Since a1 and a2 are non-zero,

p1 = q1 = q2 =0, a1p2 + a2q3 =0, a1p3 + a2q4 =0. (48a–c)

The last two equations (48b) and (48c) can be simplified by recalling that a1 and a2 are
positive. Since equations (48b) and (48c) have a solution for positive a1 and a2 if p2q3 E 0
and p3q4 E 0, the closed loop system is stable if equation (48a) holds and p2q3 E 0 and
p3q4 E 0. Including equation (48a) in the plant and the controller inputs (5) simplifies the
expression of a0, a1, b0, b1 and d which are given in Appendix A.
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It should be noted that equation (48) is based on the Lyapunov’s function defined in
equation (43). The stability analysis was intended to give a simple (but possibly not
general) relation for choosing the input gains so that the closed loop system becomes
stable.

To this end the stability of the fixed point of equations (1) and (3) has been studied and
a relation with which the input gains (pi , qi ) are chosen for a stable system derived. In the
next section using the proposed control strategy one shows that this method can be used
to suppress the plant vibrations.

5. CONTROLLER IMPLEMENTATION

To implement the controller and take advantage of the neck phenomenon, the Updating
Input Algortihm (UIA) is introduced. In this algorithm the controller initial conditions are
set (using equation (10)) so that the neck in the plant response is developed. Then the plant
input Up (xc ) is applied until the plant response reaches the neck. At this time the controller
is updated to cause a new neck in the system. This process continues until an
acceptable amplitude in the plant response is obtained.

The steps of UIA are as follows:

(1) The plant states xp are measured (sensors signals).
(2) The plant maximum amplitude, using equation (34), is calculated and compared

with a small and acceptable reference value. This acceptable amplitude clearly depends on
the application of the controller. If the amplitude is small enough then go to step (1),
otherwise continue.

(3) The controller states xc are found using equation (10).
(4) The neck time (tN ) is found using equation (41).
(5) The input Up (xc ) is applied to the plant for a period of tN .
(6) Go to step (1).

To examine the above algorithm one applies it to the first two cases of Table 1.
Figure 5(a) illustrates the response of the controlled plant xp1 with the proposed controller.
The controller damping in this case is 0·15 and the plant is an undamped linear second
order system. The plant input up is given in Figure 5(b) and indicates that the input is not

Figure 5. Case 1 of Table 1: (a) plant response, (b) plant input.
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Figure 6. Case 2 of Table 1: (a) plant response, (b) plant input.

updated after the first neck. This is due to the fact that the plant amplitude at the neck
is small enough for terminating the above algorithm in step (2).

The input in the proposed MCC can be chosen so that it becomes uni-directional. Since
cable-driven actuators and shape memory alloys can apply force only in one direction,
having a uni-directional input is a significant advantage of the proposed technique over
the existing methods.

One showed that the neck phenomenon exists in any non-linear systems with oscillatory
(damped or undamped) linear part. This indicates that the controller can be applied to
a wide class of non-linear systems. Figure 6(a) is the response of the plant for the non-linear
case illustrated in case 2 of Table 1. The plant input up for the proposed controller is shown
in Figure 6(b).

In the next section an experimental piezo-actuated flexible beam is used to authenticate
the theoretical results developed in reference [1] and this work. For simplicity, the flexible
beam is modeled as a one-degree-of-freedom system and its natural frequency and damping
ratio are obtained using experimental data. The controller is the proposed MCC with
updating input algorithm UIA.

6. EXPERIMENTAL STUDY

The experimental system comprises a piezo-actuated cantilever beam, controlled
digitally using a personal computer. The controller is implemented on software using ‘‘C’’
code. The beam is made of sheet aluminum with geometrical and physical properties as
in Table 3. The actuator is composed of eight pieces of piezo-ceramic (Sensor HiTech Ltd.,
BM532) rigidly bonded to both sides of the aluminum sheet at the clamped end as shown

T 3

Beam properties

Length (mm) Width (mm) Thickness (mm) Density (kg/m3) Young’s modulus (N/m2)

457 25·5 0·8 2710 7·0×1010



Strain gage
Piezo-ceramic

2

10
75

457 0.
8
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Figure 7. The experimental cantilever beam.

in Figure 7. The total length of the piezo-ceramic layers on each side is 75 mm with a
thickness of 0·6 mm.

The beam deflection is measured using a strain gauge (Measurement Group Gauge, type
EA-B-125TQ-350) bonded near the piezo-ceramic layers as seen in Figure 7. The beam is
fixed to a massive test-bed in order to isolate the beam from external excitations.

The strain gauge signal is amplified using an in-house amplifier. In addition, for noise
reduction the signal is filtered by a low pass filter with a cut-off frequency of 50 Hz. The
signal is then converted to a digital signal using an A/D converter and sent to a personal
computer.

The beam velocity is approximated numerically by a second order finite difference
derivative using the beam deflection signal from the strain gauge. The beam state variables,
position and velocity, are used to generate the feedback input using the proposed
controller. After converting the plant input to an analog signal, the input is amplified and
sent to the piezo-ceramic actuators.

The beam is considered as a one-degree-of-freedom system which is a simplified version
of equation (1). That is,

ẍp1 +2wpzpẋp1 +w2
pxp1 = up , (49)

where wp and zp are the natural frequency and damping ratio of the beam’s first mode and
up is the feedback input.

The natural frequency and damping ratio of the beam are determined using a time
response of a free vibration of the beam. Figure 8(a) shows the beam response for a typical
free vibration. Using Fourier transforms the frequency of the beam is obtained to be
27·0 rad/s or 4·30 Hz. To attempt to ascertain the beam damping ratio, one uses the
logarithmic decrement technique for the beam time response shown in Figure 8(a). Since
the damping is small one assumes z1− z2

p 1 1. Implementing the logarithmic decrement
method to the beam response every four cycles results in Figure 8(b). As the figure shows,
the damping ratio declines as the beam amplitude decreases. This is explained by
recognizing that due to light damping of the beam, air resistance is a major damping
factor for vibration suppression. In addition, air resistance is a non-linear function of
velocity and increases rapidly with velocity. Therefore, for large amplitudes where the
beam travels faster the equivalent damping ratio obtained from the logarithmic decrement
method is much higher than that for small oscillations. Since the damping ratio of the beam
in general is very small an average value of zp =0·004 is assumed for the experimental
work.

Identifying the beam equation, one now implements the proposed controller. As
mentioned earlier the controller has the structure

ẍc1 +2wczcẋc1 +w2
c xc1 = uc , (50)
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where wc and zc are the controller natural frequency and damping ratio, respectively, and
uc is the feedback input. The controller frequency is set to resonance i.e. wc =wp /2z1− z2

c
,

while zc mainly depends on the maximum capacity of the actuator. Larger zc is an
indication of faster vibration suppression or larger actuator effort. It should be noted that
the bending moment applied by the actuator to the beam is directly proportional to the
input voltage applied to the piezo-ceramics. The maximum voltage in our experiment is
limited to 180 V which limits the maximum damping zc .

The feedback inputs up and uc are

up = p2ẋc1xc1 + p3ẋ2
c1, uc = q3ẋp1xc1 + q4ẋp1ẋc1, (51a, b)

with p2q3 E 0 and p3q4 E 0 for closed loop stability. For this experiment one sets p2 =0,
p3 =−1, q3 =0, q4 =2 and assumes the beam tip oscillations do not exceed 240 mm.
Applying the controller to the beam and measuring the input voltage to the piezo-ceramics
shows that zc cannot be more than 3·5%. Therefore, to use the full strength of the actuators
one sets zc =0·035.

Selecting the controller initial conditions from equation (10) one demonstrated that a
neck emerges in the plant response. In the following the authors first show the existence
of the neck in the flexible beam response and then apply the proposed MCC to suppress
the beam oscillations.

Figure 9(a) shows the beam response when the controller initial conditions are obtained
using equation (10). As expected from the theory the beam oscillatory energy is transferred
to the controller and then a portion of the energy is transferred back to the beam.
Figure 9(b) presents the input voltage to the piezo-ceramics which is uni-directional
(between −180 and 0 V).

To implement the proposed control strategy one uses the UIA. The beam response using
UIA is shown in Figure 10(a) for an arbitrary initial condition. The piezo-actuator input
in Figure 10(b) indicates that the input is updated when the beam response reaches its first
neck, at around 2·1 s.

One of the present main achievements is the extension of MCC so that it can be used
on-line. This was achieved by finding the controller initial conditions and the neck time
analytically rather than using trial and error. To explore this capability of the proposed
controller the controller was applied to the beam while it is repeatedly disturbed as shown

Figure 8. (a) Free vibration of the beam, (b) beam damping.
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Figure 9. (a) Neck in the beam response, (b) input voltage to the piezo-ceramics.

in Figure 11. The results indicate that the proposed controller is robust enough to be used
in practical applications.

For comparison, the beam response with a velocity feedback controller was examined.
It should be noted that the beam input up (piezo-ceramics input) was not filtered when one
applied the proposed MCC. However, when one attempted to implement the velocity
feedback controller to the beam the input signal had to be filtered. The controller was
unstable unless the beam input was filtered with a low pass filter with a cut off frequency
lower than 24 Hz.

The velocity gain was selected so that for beam oscillations with amplitude 240 mm,
the input to the piezo-ceramics becomes 2180 V. In Figure 12(a) the dashed line shows
the beam response with velocity feedback while the solid line indicates the beam response
with the proposed MCC. The piezo-ceramics input is shown in Figure 12(b). The dashed
and solid lines present the piezo-ceramic input using velocity feedback and MCC,
respectively.

Although the beam response with the velocity feedback controller is damped slightly
faster in the first five cycles, the beam amplitude is the same for both controllers afterward.

Figure 10. (a) Beam response using UIA, (b) input voltage to the piezo-ceramics.
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Figure 11. (a) Beam response using UIA with disturbance, (b) input voltage to the piezo-ceramics.

It is also well worth noticing that while the input of the MCC varies between −180 and
0 V, the input of the velocity feedback changes between −180 and 180 V; the overall
performance of the controllers is the same.

As another comparison, a uni-directional velocity feedback controller is applied to the
beam. In this controller the piezo-ceramics input is set to zero whenever ẋp Q 0. In
Figures 13(a) and (b) the dashed and solid lines indicate the beam response and
piezo-ceramics input using the uni-directional velocity feedback and MCC, respectively.
From the plots it is obvious that although the maximum actuator effort for both
controllers is the same, the beam response is suppressed more rapidly using the proposed
MCC. This is the most significant advantage of the MCC over conventional control
methods for actuators which are not able to produce a symmetric force. Examples of these
actuators are cable-driven and shape memory alloys actuators. Since the method is able
to produce a uni-directional input, it can be utilized more effectively with this type of
actuators.

Figure 12. (a) Comparison of the beam response using MCC (——) and velocity feedback (- - - -). (b) Input
voltage to the piezo-ceramics using MCC (——) and velocity feedback (- - - -).
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Figure 13. (a) Comparison of the beam response using MCC (——) and uni-directional feedback (- - - -).
(b) Input voltage to the piezo-ceramics using MCC (——) and uni-directional feedback (- - - -).

7. CONCLUSION

In this two-part paper, a new method in non-linear controller design has been studied
using the notion of non-linear modal coupling. All theoretical aspects of the proposed
technique have been elaborated and shows that for a wide class of non-linear systems with
oscillatory linear part, the method can be applied. The stability of the closed loop system
has also been addressed and a simple relation to test the stability of the system derived.

The Upgrading Input Algorithm (UIA) has been introduced as a means to implement
the controller. The algorithm takes advantage of the neck which is developed in the plant
response. The method was applied to an experimental flexible beam. The results show that
the proposed MCC is more robust to noise. Furthermore, the proposed controller is able
to produce a uni-directional input which has the same performance, using a velocity
feedback control, with twice the peak to peak actuator effort. This is particularly useful
for the cases where the actuators are uni-directional.
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APPENDIX A: GENERAL FORMS OF TERMS IN EQUATION (40)

The general form of a0, a1, b0, b1 and d in equation (40) are

a0 =−9(wc sin (2fc )q4 + bc cos (2fc )q3)p2
2 +18wc (sin (2fc )q3 − b3wc cos (2fc )q4)p2p3

+9w2
c (bc cos (2fc )q3 + sin (2fc )wcq4)p2

3 , (A.1)

a1 = (18p2
3 (sin(4fc )−3 sin (2fc ))w2

c +9bcp2p3(7 cos (2fc )−4 cos (4fc ))wc

+9p2
2 (sin (2fc )−2 sin (4fc ))q3 +3wc (6bcp2

3 (cos (4fc )−1)w2
c

+3p2p3(4 sin (4fc )+3 sin (2fc ))wc − bcp2
2 (6 cos (4fc )+9 cos (2fc )+6))q4

+6wc (bcp2
3 (3 cos (2fc )−2 cos (4fc ))w2

c + p2p3(3 sin (2fc )

−4 sin (4fc ))wc +2bcp2
2 cos (4fc ))r2 +24w2

c (sin (4fc )(p2
3w2

c − p2
2 )

−2bcp2p3wc cos (4fc ))r3 +3(p2
3 (3 sin (2fc )− sin (4fc ))w2

c

+ p2p3bc (2 cos (4fc )−3 cos (2fc ))wc + p2
2 sin (4fc ))r'2

+6wc (bcp2
3 (3−cos (4fc ))w2

c −2p2p3 sin (4fc )wc + bcp2
2 (3+cos (4fc ))r'3 , (A.2)

b0 =9(bc sin (2fc )q3 −wc cos (2fc )q4)p2
2 +18wc (cos (2fc )q3 + bcwc sin (2fc )q4)p2p3

+9w2
c (wc cos (2fc )q4 − bc sin (2fc )q3)p2

3 , (A.3)

b1 =9(2p2
3 (cos (4fc )−2 cos (2fc )−1)w2

c + bcp2p3(4 sin (4fc )−7 sin (2fc ))wc

+ p2
2 (3 cos (2fc )−2 cos (4fc )−2))q3 +3wc (−6bcp2

3 (sin (4fc )+ sin (2fc ))w2
c

+ p2p3(9 cos (2fc )+12 cos (4fc ))wc +3bcp2
2 (2 sin (4fc )+ sin (2fc )))q4

+6wc (bcp2
3 (sin (4fc )−3 sin (2fc ))w2

c + p2p3(3 cos (2fc )−2 cos (4fc ))wc

− bcp2
2 sin (4fc ))r2 +6w2

c (2p2
3 (cos (4fc )−3)w2

c +4bcp2p3wc sin (4fc )

−2p2
2 (cos (4fc )+3))r3 +3(p2

3 (3 cos (2fc )−2 cos (4fc ))w2
c + p2p3bc (3 sin (2fc )

−4 sin (4fc ))wc +2p2
2 cos (4fc ))r'2 +6wc (2bc sin (4fc )p2

3w2
c −4p2p3 cos (4fc )wc

−2bcp2
2 sin (4fc ))r'3 , (A.4)

d=64bcz
3
c (3z2

c +1)(5z2
c −9)(3z2

c −4)2w3
c . (A.5)


